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Abstract. Bayesian neural networks combine the universality of the neural 

networks with the principled uncertainty quantification of the Bayesian 

approach. The black-box character of neural networks makes it difficult 
establishing appropriate priors for the weights of the neural network. In this 

paper we propose a hierarchical model where the prior distribution of the 

network weights is drawn from a Dirichlet process mixture model. We further 
extend the model to dependent Dirichlet process mixtures to allow the model to 

account for non-stationarity in the data. The neural network with dependent 

Dirichlet priors is used to model a pairs trading experiment. 
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1. Introduction 

The past decade has seen a revival and spectacular successes of neural networks, 

revival brought about by advances in training algorithms and in hardware capabilities 

(especially parallel architectures like GPU). Despite their successes the neural network 

architecture is capable of outputting only point-wise forecasts without being able of 

offering any quantification of uncertainty of network’s forecast. The early works of 

MacKay [1] and Neal [2] proposed a principled Bayesian model of neural networks 

where priors are placed on the weights of connections between the neurons. While the 

backpropagation introduced by Rumelhart in [3] has transformed the problem of 

training of neural networks into a problem of optimization of a cost function, the 
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training of the Bayesian neural networks (BNN) is a problem of Bayesian inference of 

the posterior distribution of network’s weights. 

The majority of the Bayesian neural network literature has focused on the problem 

of inference of the posterior distribution of the network’s weights. In [2] Neal 

proposed a modified Markov chain Monte Carlo (MCMC) sampling scheme based on 

Hamiltonian dynamics to estimate the posterior distribution of network’s weights. 

Although asymptotically guaranteed to correctly estimate the posterior distribution, the 

sampling-based methods are computationally expensive which limits their 

applicability to relatively small networks and datasets. 

To overcome the shortcomings of MCMC schemes, various variational inference 

procedures have been introduced in the literature. The variational inference introduced 

by Jordan in [4] was used by Graves in [5] to approximate the posterior distribution. 

The variational inference replaces the computationally expensive sample-based 

approach with the approximation of posterior distribution with a parametric family of 

easier to sample distribution. The variational inference thus consists in finding a 

distribution among the parametric family that minimizes a measure of discrepancy 

(usually Kullback-Leibler divergence) between the posterior distribution and the 

approximating distribution. The literature on variational inference has focused either 

on finding more expressive approximation families (see for example the work on 

normalizing flows of Rezende et al in [6]) or on extending measure of divergence 

between probability distribution (see for example Hernadez-Lobato in [7] using the α-

divergences or operator variational inference of Ranganath in [8]). 

Although a considerable literature was devoted to the problem of inference of 

Bayesian neural networks relatively few papers addressed the problem of selecting the 

prior distribution of neural network’s weights. Since MacKay and Neal the default 

choice for BNN priors seems to be the normal distribution (N(0,1)) However the black 

box character of neural network makes it difficult to impose an informative prior 

distribution on network weights. Following this intuition Lee in [9] proposed using the 

non-informative priors introduced by Bernardo in its reference analysis [10], positing 

that since the neural networks are black boxes our priors for the weights should reflect 

our ignorance. Another approach in model selection of BNN is offered by Gohsh et al 

in [11] who uses a horseshoe prior to enforce the sparsity among the network’s 

connection. 

In this paper we address the problem of choosing the prior distribution for 

network’s weights from a Bayesian nonparametric point of view. The Dirichlet 
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processes introduced by Ferguson in [12] acts as a distribution of probability on the 

space of distributions of probability. Using a Dirichlet process prior in our opinion 

delegates the problem of selecting the prior distribution to the data itself without 

forcing the analyst to make unnecessary assumptions. The Dirichlet processes are 

specified by a base measure (probability distribution) and a concentration parameter. 

The expectation of a Dirichlet process is equal to the base measure and the 

concentration parameter controls how far from the base measure are each draw from 

the Dirichlet process. 

In this paper we discuss the following: 

• Section 2 How to specify a neural network with Dirichlet Process priors. Being 

discrete processes the Dirichlet processes are not suited as priors for BNN. We 

use the Dirichlet process mixture model which extends to continuous case the 

Dirichlet process. Choosing as base measure the normal distribution we ensure 

that the prior of the neural network is closed to the normal distribution 

(closeness controlled by the concentration parameter) while at the same time 

retaining the flexibility of deviations from normality should the data require. 

The model proposed is a hierarchical one in the sense that we endow the 

concentration parameter with a prior distribution of its own. 

• Section 3 The specification of dependent Dirichlet process priors (see 

MacEachern [13]) for neural network weights to account for non-stationarity of 

the data. We use a Dirichlet process driven by a Gaussian process (see 

Rassmusen [14]) to account for the temporal evolution of financial data’s 

regimes. 

• Section 5 Application of the BNN with Dirichlet process priors to model the 

evolution of correlated pairs of financial assets (pairs trading) 
 

1 Dirichlet Process Mixture Priors 

1.1 Dirichlet Process Mixture Model 

Dirichlet distribution: Following Ruxanda in [15] we describe Dirichlet 

distribution as the multivariate generalization of the beta distribution whose 

probability density function parametrized by the vector α is: 

f(x; α) =
1

B(α)
∏ xi

αi−1

K

i=1

, 
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where:B(α) =
∏ Γ(αi)K

i=1

Γ(∑ αi
K
i=1 )

. 

The Dirichlet distribution is conjugate to the multinomial distribution which makes 

them very useful to the Bayesian analyses. 
 

Dirichlet Process: The Dirichlet Process was first constructed by Ferguson in [16] 

as a probability measure on the space of probability distributions 
 

Definition 2.1. Let G0 be a finite measure on a Polish space X. A random measure 

P is said to be a Dirichlet process if for every finite measurable partition {B1...,Bn} the 

joint distribution of (P(B1),...,P(Bn)) is a Dirichlet distribution Dir(G0(B1),...G0(Bn)) 

The Dirichlet process thus defined is a discrete measure with probability 1. 

Ferguson also proves that a Dirichlet process has an expectation E[P] = G0 that is the 

expectation of a Dirichlet process is the base measure of that process. 

Sethuraman in [17] has defined an alternative constructive definition of the 

Dirichlet process called the stick breaking construction: 

Definition 2.2. Let α >0 and G0 a probability measure on X. The random discrete 

probability measure: 

 P = ∑ Ck
∞
k=1 δΦk

 (1) 

where Φ1,Φ2 ··· ∼iid G0, δ is the Dirac measure and the weights are constructed as: 

 Ck = Vk ∏ (1 − Vj)
k−1
j=1  (2) 

with V1,V2,··· ∼iid Beta(1,α). 

The random probability measure P is said to be sampled from a Dirichlet process 

DP(αG0). In Figure 1 we present some samples extracted from a Dirichlet process with 

a standard normal base distribution. We can observe the concentration of samples 

around base measure(bold) and the discrete character of the samples. 

The almost sure discrete character of Dirichlet process makes them inconvenient in 

many modeling situations. Following the definition of mixtures of probability 

distributions for a mixing measure θ: 

 

 p(x) = ∑ ckp(x|ϕ
k

)k∈N = ∫ p(x|ϕ)θ(dϕ) (3) 
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Figure 1: Samples extracted from a Dirichlet process 

 
Ferguson in [12], Lo in [18] and Escobar et al [19] define the Dirichlet Process 

Mixture model (DPM) using the stick-breaking measure (1) as a mixing measure: 

P ∼DP(αG0) (4) 

Φ1,Φ2,...|P ∼iid P (5) 

Xi ∼p(x|Φi) (6) 

where p(x|Φ) is parametric family of continuous density functions. 

Therefore, we can write the density of a DPM making use of the weights (2): 

 p(x) = ∑ Ckp(x|Φk)k∈N  (7) 

 

1.2 DPM priors for Bayesian neural networks 

Neal in [2] defines the Bayesian neural network (BNN) by attaching prior 

probability distribution to the weights W of the neural network defined by a repeated 

application of a nonlinear transfer function to an affine transform. A neural network is 

constructed by stacking layers of neurons of the form: 
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 yi = h(∑ wj
n
j=1 ⋅ xij) i = 1, … , n (8) 

where n is the number of neurons per layer and xij are inputs to neuron i. 
A BNN is defined by attaching a prior probability to the network’s weights W 

∼p(W), the learning process for a dataset D = {(xi,yi)} of pairs of inputs and target 

values is the Bayesian inference: 

 p(W|D)
∏ 𝑝(𝑦𝑖|𝑓(𝑥𝑖 , 𝑊))𝑝(𝑊)𝑖

𝑝(𝐷)
, (9) 

where f is the nonlinear likelihood function obtained by composing the layers. The 

problem of selection a prior distribution for the weights of Bayesian neural networks is 

complicated by the black box character of neural networks. While Neal [2] and 

MacKay [1] has proposed the use of normal distributions as prior probabilities for the 

weights of the network we propose using a DPM scale prior.  

We formalize the Bayesian neural network with Dirichlet process mixtures 

(DP-BNN) as follows: 

α ∼ Γ(a, a);    V1, V2, … ∼iid Beta(1, α); 

Ci = Vi ∏(1 − Vj)

i−1

j=1

; 

τ1 , τ2 , … ∼iid Γ(b, b);   λ1 , λ2, … ∼ Uniform(0, c); 

w ∼ ∑ Ci𝒩(0, (λiτi)
−1)

∞

i=1

; 

σϵ ∼ C+(0, c);   y ∼ 𝒩(f(x, w), σϵ
2),  (10) 

where f(x,w) is the nonlinear transfer function from inputs to outputs obtained by 

composing the neural network’s layers. 

The DP-BNN model above proposes a scale mixture prior distribution for the 

network’s weights. The parametric mixture components are normal distribution of 

mean 0, here we follow the literature on neural networks which suggest that the mean 

of weights should be normalized to 0 mean. The base measure of the Dirichlet process 

mixture is a product of a gamma and a uniform distribution, here we follow the 

guidelines of Gelman [20] for choosing the priors for variance parameters. 

The DP-BNN model proposes a hierarchical model where the complexity of the 

prior distribution is allowed to increase alongside the complexity of the data. 
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The stick breaking weights vi although not strictly decreasing are stochastically 

decreasing making the contribution of a large number of components unlikely 

enforcing a stochastic parsimony. The stochastically decreasing behavior of stick 

breaking weights can be seen in Figure 2 where only the first two components are 

significantly greater than zero. 

We also assume a independent normally distributed noise term whose standard 

deviation σ is HalfCauchy distributed C+(0,c). 

 

Figure 2: Stochastic decreasing weights 

 

2 Dependent Dirichlet Process Priors 

The Dirichlet process mod prior of the Bayesian neural network assumes that all 

the weights are drawn iid from the base measure G0 hence an implicit assumption of 

strong stationarity is being placed on the dataset D. 

To account for the non-stationarity typical of financial datasets we will use the 

dependent Dirichlet process mixtures introduced by MacEachern in [13] as priors for 

the weights of Bayesian neural networks. 

In the dependent Dirichlet process model the stick breaking construction is 

extended to account for the dependence on a set of covariates X. The following 

generalization of the Sethuraman is being obtained: 
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 Gx = ∑ ckδϕx,k

∞
k=1 , (11) 

where φk = {φx,kx ∈X} are realizations from a stochastic process. If we ensure that cx,k 

are independent given x then G is marginally a Dirichlet process. 

The model (11) is called the single p model and is a simplification of the general 

dependent Dirichlet model of MacEachern [13] where only the locations φ(x,k) depend 

on the covariate x while the stick breaking weights are the same as in the Dirichlet 

process model. We consider that the single p model introduces a form of dependency 

that can be exploited while at the same time enjoying computational efficiencies over 

the general dependent Dirichlet process 

Our strategy to introduce dependency of networks weights on a set of covariates 

(e.g. time) is to put a dependent Dirichlet prior on the network weights. Our choice of 

driving stochastic process mirrors MacEachern’s a Gaussian process. Our reason for 

choosing a Gaussian process to model the stochastic process φk is motivated by 

Gaussian processes’ property of being universal priors over a large space of functions 

and hence many types of dependency can be modeled Furthermore a Gaussian process 

allows us to experiment with various degrees of smoothness of the covariate curve. In 

this work we choose an exponential squared covariance function introduced by 

Rasmussen in [14]. The Gaussian process with a squared exponential covariance 

function samples smooth functions whose amplitude of change from one point to 

another is controlled by a parameter of the covariance function called length scale 

Using exponential squared covariance functions allows us to specify BNN priors that 

don’t change too much for different values of the covariate thus offering some 

stability to the BNN. One can envision specifying a prior distribution to the length 

scale although this is an approach that is not pursued in this work. 

We specify the following time dependent Gaussian process with a squared 

exponential covariance function: 

k(t, t ′) = exp (
||t−t′||

2

2l2
) 

gt ∼ 𝒢P (0, k(t, t ′)) (12) 

where l length scale controlling the amount of covariate movement necessary for ft to 

change significantly. 

With the Gaussian process thus specified, we can proceed to introduce dependence 

on time to the model (10). Therefore, we get the following formal specification for the 

Bayesian neural network with dependent Dirichlet prior (DDP-BNN): 
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α ∼ Γ(a, a);   β
1

, β
2

, … ∼iid Beta(1, α) 

vi = β
i

∏ (1 − β
j
)

i−1

j=1

 

τ1 , τ2 , … ∼iid Γ(b, b);  λ1 , λ2, … ∼ Uniform(0, c); 

w ∼ ∑ vi𝒩(0, (λiτi)
−1gt)

∞

i=1

;   σϵ ∼ C+(0, c); 

 y ∼ 𝒩(f(x, w), σϵ
2). (13) 

The model (13) is a minimal modification of model (10) and is also relatively 

parsimonious to the constant weights model; only a single parameter is supplementary 
introduced: the length scale l. 

 

3 Related work 

Since the seminal work of the Neal [2] and MacKay [1] most of the work has 

focused beginning with Graves [5] on various variational inference scheme to address 

the computational tractability of inference in Bayesian neural network. Various 

variational inference schemes were proposed of notice we mention the normalized 

flows approach of Rezende [6] the generalization to operator-based schemes of 

Ranganath [8] and the use of α-divergences by Hernandez-Lobato [7]. 

On the issue of prior selection for Bayesian neural network we mention the use of 

horseshoe prior to impose sparsity by Ghosh et al [11] and the imposition of noise at 

the input level in the noise contrastive prior by Hafner et al [21]. 
 

4 Applications to pairs trading 

In this section we illustrate the applicability of the Bayesian neural networks 

models developed in the sections above to a challenging financial data situation. 

While much of academic literature has been devoted to forecasting financial 

datasets understood as time series (see for example Krollner in [22]) we will devote 

this section to present the application of Bayesian neural networks with Dirichlet 

process priors to pairs trading. 

Pairs trading is one of the most popular trading strategies in the financial markets 

and it is based according to Gatev in [23] on finding two assets that have historically 

moved together and trading the spread between the prices of those two assets. When 
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the spread between the prices widens beyond a statistical measure of significance 

(usually Z-scores) one will sell the overpriced asset and buy the underpriced asset in 

the expectation that the spread between them will revert to a historical mean. 

The traditional approach to modeling the joint evolution of pairs of financial assets 

is to find pairs of assets whose returns are cointegrated and model their evolution with 

linear models. We consider this approach to include in the universe of tradeable pairs, 

only to pairs that are linearly correlated and their relationship stationary as highly 

restrictive. As showed by Cont in [24] the evolution of financial returns is 

characterized by the lack of linear dependence, non-stationarity, relatively low signal 

to noise ratio. 

We posit that Bayesian neural network with Dirichlet process prior are suitable to 

model evolution of pair of assets because: 

• The universal approximator property of neural networks allows us to 

approximate a large class of nonlinear dependencies. 

• Being a Bayesian model one can easily quantify and propagate the uncertainty 

of the network’s forecasts. This quantification of uncertainty allows the analyst 

to better cope with low noise to signal ratios and to devise better risk 

management tools. Therefore, when the confidence of the network is high, we 

can place a larger bet relative to the situation when the confidence is low and 

one should not trade on the forecast made. 

• The dependent Dirichlet process priors allow the network to adapt to the non-

stationarity encountered in the data. 

To illustrate the points above we offer the example of a classic pair trading 

strategy: an ETF of gold miners (GFI) against an ETF replicating the evolution of the 

price of gold (GLD). 

When looking to Figure 3 one can easily identify various temporal regimes of the 

joint evolution of GFI relative to GLD. Although the evolution seems tobe piecewise 

linear or weakly nonlinear we can easily spot the non-stationarity in the evolution of 

the relationship. Because of the non-stationarity one cannot find a single function that 

can approximate well the data as it can be inspected graphically in Figure 3. 
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Figure 3: The time joint evolution of GFI vs GLD 

 
We propose the following types of Bayesian neural networks to model the 

evolution of GFI vs GLD: 

• Classical Bayesian feedforward neural network. Here we assign a N(0,1) prior to 

each layer of the network. This model will serve as a baseline against which the 

models introduced in this paper. 

• DP-BNN Bayesian neural network with Dirichlet process prior. Here we endow 

each weight of the network with a Dirichlet mixture prior. As mixtures can 

approximate arbitrarily complex distribution, this prior allows us to specify priors 

as complex as data requires. A major drawback of this model is that like the 

classical BNN it cannot account for the non-stationarity in the evolution of the pair. 

• DDP-BNN Bayesian neural network with dependent Dirichlet process prior. Here 

we endow each weight with a dependent Dirichlet process mixture driven by a 

Gaussian process. This model should be able to model the non-stationarity in the 

data. 

Table 1: Root mean square error for Bayesian neural networks 

Model RMSE 

BNN 0.08754 

DP-BNN 0.059467 

DDP-BNN 0.012111 
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 (a) BNN (b) DP-BNN (c) DDP-BNN 

Figure 4: The fit of the GFI/GLD data 
All the experiments were done using pymc3 [25] a probabilistic programming 

package running in python. For the Dirichlet process models we decided to cutoff the 

infinite sum to 6 components but as we can see from the Figure 2 only the first two 
components have significant weight, hence the finite truncation does not adversely 

impact the results of the inference. 

For the inference we used the No U Turn sampler of Hoffman et al [26] a variant 

of the Hamiltonian Monte Carlo algorithm presented by Neal in [2]. The table 1 

presents the root mean square error for all 3 Bayesian neural network considered; we 

used the expectation of the posterior distribution as the point forecast, as we consider 

the expectation as representative of the typical set of the posterior distribution. 

If we examine graphically the fit of each model in Figure 4, we observe that the 

dependent Dirichlet mixture priors manage to recover the multiple temporal regimes in 

the data while the simple Dirichlet mixture prior tries to fit a single nonlinear curve 

that tries to mediate among the different temporal regimes. The simple Bayesian 

neural network presents the worst fit that is also evident in the RMSE presented in 

table 1. 

5 Conclusion 

In this paper we showed how  we can specify more complex priors for Bayesian 

neural networks than the normal distribution prior usually found in the literature. Our 

approach is to use a Bayesian nonparametric mixture priors whose complexity is 

allowed to grow with the complexity of the data. Moreover, we showed how one can 

introduce the dependence on one covariate (time) with the minimum increase of 

complexity of the Bayesian inference (only one supplementary parameter) by using a 

dependent Dirichlet mixture process driven by a Gaussian process. We consider that 

Bayesian neural networks are best fitted for financial data modeling task as their 
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principled approach to quantifying and propagating the uncertainty is a natural fit to 

the requirements of risk management usually found in the financial sector. 
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